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Abstract
Using two different experimental setups with energy widths of about 6 and 13 meV, we
obtained significantly improved results for the energy dependence of angle-differential
(10◦–180◦) elastic and vibrationally inelastic cross sections for electron scattering from N2

molecules in the energy range around the narrow N−
2

(
R2�+

g

)
resonance. The energy location

and the natural width of this resonance are determined as 11.497(2) eV and 1.3(2) meV,
respectively. Ab initio potential energy curves are obtained from CCSD(T) calculations for the
neutral N2

(
X1�+

g

)
and N∗

2

(
E3�+

g

)
states as well as for the N−

2

(
R2�+

g

)
resonance state. They

corroborate quite accurately the measured resonance energy and provide accurate energy
spacings and overlap integrals for the pertinent vibrational states. A detailed analysis of
resonance line shapes for selected scattering angles is performed by applying a model for the
interference of resonant and nonresonant scattering processes. It provides a link between the
resonance width to absolute DCS and describes elastic and vibrational excitation processes on
a common basis. Through both their size and sign, vibrational overlap integrals are shown to
determine the observed Fano-type line shapes and account for the opposite asymmetries and
intensity changes of adjacent vibrational resonance peaks. Fine-tuning of the fits to the
observed shapes is achieved by proper parametrization of the nonresonant amplitudes. A
highly resolved excitation function for the formation of the metastable N∗

2(E
3�+

g ) level from
threshold (near 11.88 eV) to 13.4 eV is also presented.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A sharp resonance in electron scattering from ground state
N2

(
X1�+

g , v = 0
)

molecules was first reported by Heideman
et al [1]; in an electron transmission experiment (energy width
�E = 50 meV), they located the resonance at 11.48(5)
eV and gave an upper limit of 20 meV for its width �.
Subsequently, Comer and Read [2] performed an angle-
differential electron scattering experiment (�E = 40(5) meV)
in which the elastic (�v = 0) and the vibrationally inelastic

(�v = 1, 2, 3) processes were studied. From a detailed
analysis of the resonance in elastic scattering at θ = 40◦ and
the near-isotropic angular distribution of vibrational inelastic
scattering, Comer and Read concluded that the symmetry of
the resonance (subsequently labelled by the letter R) is 2�+

g

and proposed that the most likely parent state is the E3�+
g

state at 11.87 eV [3]. Thus the leading configuration of
the resonance state can be written as 2σ 2

g 2σ 2
u 1π4

u 3σ 1
g 4σ 2

g .
Moreover, they estimated the resonance width � as 0.6 meV.
The N−

2

(
R2�+

g , v = 0
)

resonance was also observed by Kisker
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[4] as a small peak in the excitation function of the N2(C3�u)

state (�E = 50 meV), in the excitation function of the
N2(B3�g) state (�E = 30 meV) by Mazeau et al [5] and
in transmission experiments by Sanche and Schulz [6] and by
Golden et al [7]. In 1973, Schulz [8] reviewed the knowledge
achieved to that date.

A high-resolution study of the N−
2

(
R2�+

g

)
resonance in

elastic scattering at θ = 22◦ was carried out by van Brunt and
Gallagher, who used a laser photoelectron source (apparent
resonance width 12 meV, see figure 6 in [9]). Newman et al
[10] reported the first observation of this narrow resonance in
the yield for formation of metastable excited N2 levels and
positioned the v = 0 and v = 1 states of the resonance at
11.499(10) eV and 11.770(10) eV. Later, angular resolved
vibrational excitation (VE) of N2 (�v = 1) through this
resonance was restudied by Tremblay and Roy [11] over
the range θ = 18◦–162◦ with improved resolution (�E ≈
25 meV). They found that the ratio of the intensities for
VE via the v = 0 and the v = 1 resonances was smaller
than unity and nearly constant at angles below 122◦, but
changed ‘quite dramatically at larger angles, the first peak
becoming increasingly higher than the second peak’ [11]. This
observation was interpreted as an interference effect between
the resonant and the nonresonant amplitudes. Quite recently,
another elastic scattering study of the N−

2

(
R2�+

g

)
resonance

was carried out by Mielewska et al (�E = 35 meV) [12],
who used a magnetic angle changer [13] to extend the angular
range to 180◦.

In the present work, two different experimental setups
have been used to restudy elastic and vibrationally inelastic
electron scattering from N2 molecules in the energy range
around 11.5 eV at improved energy resolution (�E ≈ 6
and 13 meV, respectively). Moreover, we report a highly
resolved excitation function (�E ≈ 6 meV) for the formation
of the metastable N∗

2(E
3�+

g ) level near threshold. To aid the
interpretation of the experimental data, high level ab initio
calculations of the relevant potential energy curves have been
carried out. The resonance spectra are analysed using an ansatz
which incorporates the important interfering scattering paths.

The paper is organized as follows. In section 2, we briefly
describe the two experiments in Kaiserslautern (referred to
as KL) and Fribourg (referred to as FR); in section 3, we
sketch the ab initio calculation of the potential energy curves
for N2

(
X1�+

g

)
, N∗

2

(
E3�+

g

)
and N−

2

(
R2�+

g

)
and compare with

spectroscopic data. Section 4 provides some background
for the modelling of resonance line shapes as applied here.
In section 5, we present the experimental results and their
analyses and compare with previous results. We conclude
with a brief summary.

2. Experimental

2.1. Experiment at Kaiserslautern

Potassium atoms in a collimated atomic beam are photoionized
at threshold by a two-step process via the K(4p3/2) level
[14], using a stabilized two-frequency Ti:Sa laser (λ1 =
767 nm) for excitation and a focused intracavity dye laser

detector of
excited

metastable
species

supersonic
nozzle beam

to Faraday cup

retarding field detector

potassium
beam

laser 2
( =455 nm)λ2

laser 1
( =767 nm)λ1

Figure 1. Kaiserslautern laser photoelectron source setup for
high-resolution measurements of elastic scattering; only one of the
five detectors for elastically scattered electrons is shown (22.5◦, 45◦,
90◦ (in figure), 112.5◦, 135◦).

(λ = 455 nm) for ionization (see figure 1). The near-
zero energy photolectrons are extracted by a weak electric
field (≈10V m−1) and imaged onto the target beam. Five
retarding field electron detectors at fixed angles count the
scattered electrons (only that at 90◦ is shown), such that both
truly elastic and rotationally inelastic/superelastic processes
are sampled with equal probability. The triply differentially
pumped supersonic target beam nearly eliminates Doppler
broadening [15–17]. To correct for background electrons,
alternating measurements with and without target beam were
carried out and the latter spectra subtracted from the former.
The background amounted to about 20% at 22.5◦ and 135◦

and around 10% for the other angles. Drifts of the energy
scale were accounted for by passive spectrum stabilization,
as described in [16, 17]. At a beam current of 80 pA, an
energy width of about 6 meV was obtained. The angular
distribution for elastic scattering at energies close to, but not
coinciding with the resonance, was found to be independent
(to within 10%) of stagnation pressure over the range 1–6 bar
and to agree with that measured with the Fribourg instrument
to within 20% or better.

The production of long-lived excited species is monitored
by a channel electron multiplier, mounted slightly off the
direction of the target beam, to account for the momentum
transfer induced by the excitation process.

2.2. Experiment at Fribourg

Electrons emitted from a hot filament are energy selected by
a double hemispherical monochromator and focused onto an
effusive beam target, introduced by a 0.25 mm nozzle kept at
about 30 ◦C (see figure 2). A double hemispherical analyser
for detection of elastically or inelastically scattered electrons
ensures background-free signals [18]. Monochromator and
analyser are operated at equal pass energy and provide
the same energy resolution. Absolute cross sections are
determined by comparison against He using a relative flow
method [19]. A specially designed magnetic angle changer
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Figure 2. Fribourg electron scattering apparatus involving double
hemispherical monochromator and analyser.

allows for continuously sweeping the angle and in particular
measurements up to 180◦ scattering angle [20]. Detailed
procedures for ensuring reliable cross sections have been
described elsewhere [21, 22]. The accuracy is about ±15%
for the elastic cross sections and ±20% for the vibrationally
inelastic cross sections. The energy width of the incident
electron beam was around 13 meV at a current of about 400 pA.
Some measurements at 30◦, 45◦ and 90◦ were performed with a
resolution around 10 meV. The analyser, when set to the centre
of the respective vibrational scattering peak (�v = 0 − 3),
preferentially detects rotational processes with �J = 0 (for
J = 7, the most populated level at 300 K, S-branch (�J = +2)
and O-branch (�J = −2) scattering are displaced from the
rotationally elastic Q-branch (�J = 0) by −8.5 meV and
+6.5 meV, respectively).

3. CCSD(T) calculations and comparison with
spectroscopic data

For the ground state N2
(
X1�+

g

)
, the excited state N∗

2

(
E3�+

g

)
—

which is the parent state of the resonance—and the resonance
state N−

2

(
R2�+

g

)
, ab initio potential curves were determined in

CCSD(T) calculations using the MOLPRO program package
[23]. The coupling of the resonance state to its embedding
continuum is sufficiently weak that these calculations converge
nicely without any help from a projection algorithm. Due to
small excitation energies for 4σ 2

g → 2π2
u , the norm of the T2

part of the CC wavefunction does increase from 0.12 for the X
state to 0.23 for the R state. This is still acceptable, so that the
CC calculations can be trusted over the range of internuclear
distances relevant here. Of course, an adequate treatment of
the resonance state requires augmenting the standard cc-aVQZ
basis set (library of MOLPRO [23]) by several sets of diffuse
functions. A graphical representation of the potential curves
(ab initio energy points with fitted Morse potential curves) is
shown in figure 3.

Figure 3. Ab initio potential curves for the N2(X1�+
g ) ground state,

the N∗
2(E

3�+
g ) parent state and the N−

2 (R2�+
g ) resonance with

respective dominant configuration, Franck–Condon region indicated
by dashed lines; the arrows indicate the pathways for resonant
vibrational excitation of N2(X1�+

g , v = 1).

Vibrational levels were obtained with the Numerov
method. The calculated spectroscopic constants are given in
table 1 and are seen to agree nicely with experimental data for
the X and E states, respectively. We expect a similar accuracy
for the R state as well, but the nearly perfect agreement of
calculated and measured resonance positions (T00 of table 1)
is certainly somewhat fortuitous. The resonance state, its
parent state and the cation ground state have all virtually the
same equilibrium internuclear separations and very similar
vibrational frequencies, as expected from the weak interaction
of the outer shell 4σ 2

g electron pair with the cationic electron
core. These separations are only slightly larger than that of the
N2

(
X1�+

g

)
ground state, reflecting the only weakly bonding

nature of the 3σg orbital which may be characterized as a
linear combination of the two localized lone-pair orbitals of
N2. From the orbital angular momentum expectation value
〈3σg|l2|3σg〉 = 3.40 we infer an approximate partial wave
decomposition of 3σg ≈ 0.75s + 0.65d + 0.20g + · · ·. The
outer electron pair of the resonant state may be characterized
by its configuration expansion, 0.80 4σ 2

g − 0.46 5σ 2
g −

0.08 3(4σg5σg) − 0.21 3σ 2
u − 0.23

(
2π2

ux + 2π2
uy

)
, and the fact

that 4σg and 5σg are nearly pure s orbitals. Its radial extension

may be quantified by
[〈ψR| ∑ r2

i |ψR〉/2
]1/2 = 7.4 Bohr. This

is rather similar to what has been found for the corresponding
resonance state of Ar. The leading coupling term between
resonance state and the corresponding continuum is given by
the two-electron integral

〈
4σg(1)4σg(2)

∣∣r−1
12

∣∣3σg(1)εσg(2)
〉
, so

that the partial wave decomposition of the continuum orbital
εσg reflects closely that of the orbital 3σg.
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Table 1. Spectroscopic constants for the pertinent electronic states of 14N2; T00: transition energies between rovibrational ground states.
aPresent ab initio calculation, bexperimental values [24], c[25] (Be obtained from experimental B0 = 1.9273 cm−1 using calculated
rovibrational coupling constant αe(E) = 0.0181 cm−1; ωe inferred from ω0 = 2185 using calculated anharmonicity) and dpresent experiment.

State Re Be ωe ωexe ωeye T00

(Å) (cm−1) (cm−1) (cm−1) (cm−1) (eV)

N2(X1�+
g )a 1.1004 1.9883 2356.6 15.47 −0.503

N2(X1�+
g )b 1.0977 1.9982 2358.5 14.32 −0.002

N∗
2(E

3�+
g )a 1.1181 1.9261 2216.9 16.08 −0.477 11.866

N∗
2(E

3�+
g )c 1.1151 1.9364 2219 11.874

N−
2 (R2�+

g )a 1.1182 1.9255 2207.7 14.93 −0.897 11.493
N−

2 (R2�+
g )d 2205(10) 15(5) 11.497(2)

N+
2(X

2�+
g )a 1.1187 1.9237 2206.5 15.70 −0.606 15.551

N+
2(X

2�+
g )b 1.1164 1.9318 2207.00 16.10 −0.040 15.581

Table 2. Vibrational overlap integrals for rotationless states of
N2(X1�+

g ) and N−
2 (R2�+

g ).

vR/vX 0 1 2 3

0 0.9620 −0.2693 0.0458 −0.0058
1 0.2659 0.8846 −0.3741 0.0815
2 0.0611 0.3648 0.8038 −0.4497
3 0.0135 0.1052 0.4331 0.7178

The resonance width is much smaller than the separation
of vibrational levels in the resonance potential, and thus
these levels are well defined. Under these conditions, as
discussed by Comer and Read [26], the cross section for
resonant vibrational excitation from an initial vibronic level
(X, vi) to a final level (X, vf) via the resonance level (R, v)

is proportional to the product of the two pertaining transition
probabilities. The latter can be well represented by a common
prefactor and v-dependent Franck–Condon factors, due to
the small amplitude of the vibrational motion. Accordingly,
the corresponding amplitude for vibrational excitation, which
governs the interference of direct and resonant processes,
is proportional to the product of the pertaining vibrational
overlap integrals. These integrals, as calculated from our
ab initio potentials, are collected in table 2. The signs of
the vibrational wavefunctions are fixed by requiring a positive
start at small R.

Vibrational excitation of ground state N2 to a particular
final state vf may proceed via different pathways, depending
on the intermediate vibrational state of the resonance. This is
indicated for vf = 1 by arrows in figure 3. These processes
show up as separate resonance peaks with line shapes that are
related by the fact that the interference with the (more or less)
same non-resonant background is mainly modulated by the
products of vibrational overlap integrals.

4. Analysis of resonance line profiles

The elastic DCSs measured over a dense energy grid around
the N−

2

(
R2�+

g , v = 0
)

resonance position show typical Fano-
type line shapes with a dependence on the scattering angle
that is reminiscent of the He−(1s2s2 2S1/2) resonance. In the
case of a spherical scatterer, the variation of the resonance
profile with angle can be calculated once the phase shifts for

direct (nonresonant) scattering and the angular momentum
of the resonance are known (see, e.g., [15]). Although the
homonuclear diatomic molecule N2 maintains a high degree
of symmetry, the analysis of the angular dependence of the
DCS is rather involved. While the fixed-nuclei approximation
used for the direct scattering is certainly appropriate there,
its validity may be in doubt for resonant scattering. The
rotational periods are �3.5 ps for the measurements at KL
(mainly J � 2 due to rotational cooling in the supersonic
expansion) and about 1 ps for the FR measurements (most
populated rotational level J = 7), as compared to the
lifetime of the resonance of 0.5 ps. But even with this
approximation, there is no reliable direct scattering amplitude
available in the literature on which we could build an angular
analysis of the interference between direct and resonant
scattering. Therefore, we focus here merely on a modelling
of the energy profiles and the extraction of a reliable value
for the resonance width. We take the apparent similarity
of the line shapes from the two sets of measurements that
differ greatly in their rotational temperatures as a justification
for the neglect of rotational motion. We just note that the
rotational population distribution causes an inhomogeneous
broadening of the resonance even if only �J = 0 transitions
are involved. With the rotational constants given in table 1
for the X and R states, this broadening—while negligible for
the KL experiment—amounts to about 0.5 meV for the FR
experiment. But this is still unobservable given the resolution
of 12–14 meV.

For convenience, we shall denote the DCS simply by
σ(θ; ε) and may even drop the arguments. Its energy
dependence in the neighbourhood of an isolated resonance
is given by the terms σr0/(1 + ε2) and σr1ε/(1 + ε2) on top of
only weakly energy-dependent contributions of nonresonant
processes, σnr = σnr0 + σnr1(E −Er). Here, ε = 2(E −Er)/�

is the usual reduced, dimensionless energy variable. The
resonance width � is assumed to be independent of scattering
angle and energy for the energy interval under investigation.
A combination of these terms provides a modelling of the
line shapes as proposed by Shore [27]. More popular is
the (equivalent) modelling as a Fano profile [28], σ =
σmin + σr(q + ε)2/(1 + ε2), but for fitting purposes this has the
disadvantage of the shape parameter q tending to infinity (and
σr to zero) for a symmetric peak. Hence, we follow Andrick
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[29] and replace q by tan(β). This leads to an expression
which is convenient for a least squares fit of the measured line
profiles:

σ = σnr + �σ [− cos(2β) + sin(2β)ε]/(1 + ε2), (1)

where �σ = σmax − σmin is the size of the line modulation
and σmin = σnr − �σ cos2(β) should never be negative. Of
course, the fit involves an energy convolution representing the
resolution �E of the apparatus, as usual accounted for by a
Gaussian function. In addition to the four linear parameters of
the above model these fits involve as nonlinear parameters the
common resonance width � and resonance position Er via ε,
and the (weakly angular-dependent) FWHM �E. As seen in
figures 5 and 6, excellent fits of the two sets of experimental
data could be achieved, i.e. χ2 is close to 1 when only statistical
errors are attributed to the electron counts. However, it was
not possible to determine � and �E separately from the line
shapes: even with an energy width as low as 6 meV, χ2 of
the fit turned out insensitive to the difference � − �E for
a range well over 1 meV. Only lower bounds for � could
be derived from the requirement that �E should not take
values which imply a negative σmin: for the FR measurements,
σmin of θ = 180◦ turns negative below � = 1.25 meV;
for the KL measurements, σmin of θ = 135◦ turns negative
below � = 1.15 meV. Since independent and sufficiently
accurate measurements of the resolution were not possible, a
reliable value for � can only be derived by reference to the
absolute DCS obtained in the FR measurements. To this end,
the line shapes need to be related to physical parameters of the
resonant and non-resonant interactions. We assume that the
resonance interferes only with a single non-resonant process
and apply the ansatz

σv(θ; ε) = |2t (v)p(θ)/(ε + i) + a(θ) i e−iφ(θ)|2/(4kikf), (2)

where ki and kf are the momenta of the incident and the
scattered electrons, respectively. A similar ansatz has already
been used by Comer and Read [2] and later also by Tremblay
and Roy [11] in the analysis of their measurements on the
same topic. It can be derived from the general structure of the
T matrix, see e.g. Burke [30], and has been shown by Andrick
[29] to conform with the common phase shift analysis of DCS
in atomic scattering. Comparison with the above defined line
shape model gives the relations

a2 = 4kikfσnr , (3)

(2t (v)p(θ))2 = 4kikf
(
σ 1/2

max ± σ 1/2
min

)2 = 4kikfσpr, (4)

sin(φ) = sin(2β)4kikf�σ/(4at (v)p(θ)). (5)

The factor i e−iφ accounts for the phase difference of
the resonant and non-resonant processes. The factor
t (v) represents the product of vibrational overlap integrals,
tvf ,vr tvr,vi , involved in the resonant scattering from the initial
state (X, vi) to the final state (X, vf) via the resonance state
(R, vr). The function p(θ) reflects the (effective) angular
characteristics of the resonance. An important point is that
p(θ)2/2 should be a normalized angular distribution in the case
that the interaction which causes the resonance profile is also
the one by which the unperturbed resonance decays, i.e. which

determines the width of the resonance. Since this is valid here
it opens the way to derive � from absolute DCS via angular
integration of p(θ)2. The hypothetical ‘pure resonant’ DCS
σpr(θ) defined in equation (4) serves mainly for a convenient
comparison with experimental DCS and fit parameters �σ ,
σmin etc. Due to the splitting of the resonance amplitude into
factors t (v) and p(θ) we expect this ansatz to provide a proper
basis for a common interpretation of the line shapes from our
elastic and vibrational excitation cross section measurements.

Another point not yet touched upon is rotational excitation
in (the nominally) elastic and vibrationally inelastic scattering.
So far, this aspect has been only addressed experimentally
in the work of Gote and Ehrhardt [31]. At the incident
energy E = 10 eV, they concluded from simulations of the
line shapes of �v = 0 energy loss spectra that �J = 0
processes are dominant up to 70◦, while for larger angles
�J = ±2 processes are strongest. A substantial contribution
of �J = ±2 processes to nonresonant scattering would
provide a background that does not interfere with resonant
scattering if the latter only involves �J = 0 processes. This
is what we find in resonant vibrational excitation, in line
with observations for the (admittedly rather different) case of
vibrational excitation of H2 via the sharp H−

2

(2
�+

g

)
Feshbach

resonance, for which Linder and Schmidt have shown that only
�J = 0 rotational transitions contribute [32], in contrast to
their observations for direct excitation. In the case of elastic
scattering we observe very deep modulation of the DCS in
particular for larger angles where little space is left for non-
interfering background in our model. This seems to indicate
similar interference also in the rotational excitation channels.
But lacking stringent evidence for rotational excitation in the
elastic channel, we decided to ignore its effect at present and
assume zero non-interfering background in elastic scattering.

5. Experimental results and discussion

5.1. Nonresonant scattering

The angular distribution of electrons scattered elastically from
N2 was measured at an incident energy of 11.4 eV (0.1 eV
below the N−

2

(
R2�+

g

)
resonance) by magnetically scanning

the angle in three intervals around 45◦, 90◦ and 135◦, as
described in [21]. They were merged in accordance with
separately measured absolute differential cross sections at
several angles, given in table 3. Either by scanning the residual
energy at constant incident energy and integrating over peak
areas or by comparing count rates under identical conditions,
cross sections for vibrational excitation were also brought to
an absolute scale. As expected in view of the absence of
infrared active vibrations, nonresonant contributions to VE
are weak and likely enhanced by adjacent broad resonances,
as discussed at the end of section 5.3. All absolute DCSs are
collected in table 3.

Our absolute differential cross section for elastic
scattering of electrons from N2 at E = 11.4 eV is shown
in figure 4. For lack of other data at this energy, comparison
is made with previous experimental and theoretical data for
E = 10 eV [31, 33–36]. In order to indicate what changes are
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Table 3. Absolute differential cross section for elastic and inelastic scattering of electrons from N2 at an incident energy E = 11.4 eV;
accuracy ±15% for elastic and ±20% for inelastic scattering.

Angle (◦) 10.0 22.5 45.0 90.0 112.5 135.0 180.0

Elastic (10−20 m2 sr−1) 3.32 2.38 1.43 0.33 0.47 0.69 0.92
v = 1 (10−24 m2 sr−1) 25.0 10.6 11.0 5.0 2.8 4.2 21.6
v = 2 (10−24 m2 sr−1) 1.4 1.2 0.43 0.44 0.44 0.86 2.1

Figure 4. Differential cross section for elastic scattering near the
resonance. (a) Present experiment at an incident energy of 11.4 eV;
individual absolute cross sections are indicated as solid circles with
error bars; (b) Theoretical data from Sun et al [33], calculated for
10 eV; (c) measurement from Sun et al at 10 eV; (d) experimental
data from Sun et al extrapolated to 11.4 eV; (e) measurement from
Gote and Ehrhardt [31] at 10 eV; (f) experimental data from Muse
et al [34] at 10 eV; (g) measurement from Linert and Zubek [35] at
10 eV.

to be expected when going from 10 eV to 11.4 eV, we include
the result from a linear extrapolation of the cross section given
in [33] for 8 eV and 10 eV (even though there seems to be
no simple trend from 6 eV to 10 eV). Agreement between the
present measurements and these extrapolated data is seen to
be very satisfactory, given the uncertainties allowed for both
experiments. Recent data from Muse et al [34] exhibit a similar
shape of the cross section. The measurements of Gote and
Ehrhardt [31] differ significantly only in the range from 140◦

to 160◦, where they are more akin to the earlier results of Shyn

and Carignan [37]. The recently reported DCSs of Linert and
Zubek [35] are in very good agreement with our results from
20◦ to 130◦; at larger angles up to 180◦ they lie between 5%
and 20% above our values. In view of the agreement between
our recent large-angle scattering data for rare gas targets and
corresponding theory [38], we are rather confident of our data
between 135◦ and 180◦. They appear to be supported also by
the calculations of Sun et al [33]. These theoretical results,
on the other hand, seem to be deficient mainly in the angular
range below 40◦ where they show a distinct shoulder. This
is somewhat surprising since forward scattering is dominated
by the effects of the long-range interaction potential due to
quadrupole moment and dipole polarizability, which have been
claimed to be adequately accounted for by numerical Born
completion up to electron angular momenta lmax = 12 in a
partial waves expansion up to Lmax = 14 [33, 36]. A full
account by analytical first-order Born completion does actually
reduce the DCS at low angles even further and produces a
maximum at around 30◦ [36]. Such a maximum appears in
the experimental data at energies from 4 to 7 eV albeit not
as strong as predicted by theory [33]. Thus, elastic forward
scattering seems to be not fully understood for N2.

5.2. The N−
2 (R2�+

g ) resonance in elastic scattering

Our energy-variable elastic DCS measurements are presented
in figures 5 and 6. They exhibit a pronounced dependence of
the resonance profiles on the scattering angle, in qualitative
agreement with the earlier findings of Comer and Read [2] but
with considerably more detail and accuracy. Note that these
figures show relative DCS measurements which have been put
on absolute scale by joining their values at 11.4 eV with the
absolute DCS given in table 3.

The position of the N−
2

(
R2�+

g , v = 0
)

resonance was
determined as 11.497(2) eV relative to the Ar−(3p54s2 2P3/2)

resonance (located at 11.103(1) eV [17]) by analysing
measurements with a mixed Ar–N2-beam in the KL setup,
which lends itself to precise energy calibrations due to
the suppression of Doppler broadening and simultaneous
measurements at all angles. Previous determinations of the
resonance position were made at substantially broader energy
widths. They agree with our result within their respective
uncertainties, namely 11.48(5) eV [1] and 11.37–11.51 eV
[6] (transmission experiments) and 11.499(10) eV [10] (as
observed in the excitation function of N∗

2(B
3�g)).

The parameters for the fits of the FR data are collected
in table 4 and are shown in figure 7 together with the fit
parameters for the KL data. We note that the data for 30◦

have been obtained in a separate run under improved apparatus
conditions that led to a significantly smaller width �E. For
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Table 4. Parameters of equations (1)–(5) for elastic DCS from the FR measurements; resonance width � = 1.38 meV.

θ (◦) 10.0 22.5 30.0 45.0 90.0 112.5 135.0 180.0

�E (meV) 16.20 14.50 9.80 12.90 13.00 13.10 12.70 15.30
σnr (Å

2
) 3.368 2.395 1.978 1.423 0.321 0.472 0.701 0.939

σmin (Å
2
) 1.537 0.874 0.732 0.604 0.068 0.074 0.098 0.054

�σ (Å
2
) 2.173 1.567 1.247 0.956 0.331 0.468 0.908 1.423

β (◦) 23.4 9.9 2.2 −22.3 −28.8 22.7 35.4 37.9
φ (◦) 38.9 15.8 3.5 −36.6 −41.6 31.5 47.9 46.4
σpr (Å

2
) 0.471 0.394 0.304 0.222 0.138 0.215 0.477 0.966

DCS [Å2/sr]

  ELECTRON ENERGY [eV]

11.40 11.45 11.50 11.55 11.60
0.80

0.90

1.00

180.0° 15.30

0.60
0.65
0.70
0.75

135.0° 12.70

0.42

0.45

0.48

112.5° 13.10

0.28
0.30
0.32
0.34

90.0 ° 13.00

1.30

1.40

45.0 ° 12.90

1.80

1.90

2.00

30.0 °  9.80

2.20

2.30

2.40

22.5 ° 14.50

3.20
3.30
3.40

10.0 ° 16.20

Figure 5. The N−
2 (R2�+

g ) resonance as measured with the FR
apparatus. The full curve represents fits to the data with resonance
width � = 1.38 meV common to all angles. The parameters of the
fit are given in table 4; second number in panels gives �E in meV.

the other angles �E shows a trend as previously observed
in analogous measurements for the Ar resonance [17], mainly
determined by beam overlap conditions. The shape parameters
β are completely independent of the fit parameters �E and �

and thus are very stable parameters. However, without further
information on direct and resonant scattering amplitudes we
cannot reason about its shape as function β(θ). For σpr the
negative sign in equation (4) has been chosen for reasons of

DCS [Å2/sr]

   ELECTRON ENERGY [eV]
11.40 11.45 11.50 11.55 11.60

0.60

0.70

135.0° 6.60

0.40

0.44

0.48

112.5° 6.80

0.27

0.30

0.33

90.0 ° 6.30

1.20

1.30

1.40

1.50

45.0 ° 6.10

2.00

2.20

2.40

22.5 ° 5.60

Figure 6. The N−
2 (R2�+

g ) resonance as measured with the KL
apparatus. The full curve represents fits to the data with resonance
width � = 1.22 meV common to all angles; second number in
panels gives �E in meV.

plausibility: with this choice, σpr is much smaller than σnr

in particular in forward scattering as should be expected from
the fact that the interaction with the resonance does not have
the long-range tail of the direct interaction; otherwise, σpr

would take values larger than σnr by factors 2–3. The angular
integration of p(θ)2 has been performed via expansion in terms
of Legendre polynomials. This expansion shows dominant
terms for l = 0 and l = 2 as one might expect for a 2�g

resonance. Somewhat surprisingly, there is also a significant
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DCS [Å2/sr]

SCATTERING ANGLE [°]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

σnr

Δσ
σpr
σmin
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−1.0

−0.5
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0.5

1.0
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ϕ

Figure 7. Analysis of elastic DCS measured with the FR (solid
points, � = 1.38 meV and the KL (open points, � = 1.22 meV)
apparatus, respectively. Solid curves are spline fits to parameters
fitting the FR data, see table 4.

contribution to σpr from l = 1 due to its relatively large
values for backward scattering. The integral of p(θ)2 hits
its theoretical value for � = 1.38 meV and � = 1.22 meV
for the FR and KL data, respectively. This difference is
not insignificant considering the fact that an uncertainty in
the absolute DCS of ±15% translates into an uncertainty of
only about ±5% for �, if the correlation of � with �E is
taken into account. These � values have been chosen for the
fitting curves in figures 5, 6 and 8 as well as the parameters of
table 4. (Note that there is a strong correlation of � not only
with �E, but also with �σ and σpr). With this choice there is
rather good agreement between the two sets of measurements,
in particular with respect to the line shape parameters β and
φ. The largest deviations occur for the angle 22.5◦ which has
a rather small �E in the KL measurements.

The smaller value of the width from the KL data
may originate from the different ways in which rotational
(de)excitation is sampled in the two experiments. If resonant
scattering is (predominantly) rotationally elastic (�J = 0),
�J = ±2 processes represent noninterfering contributions
to the background. �J = ±2 processes are detected
with the same efficiency as �J = 0 processes in the
KL experiment, while the FR setup discriminates against
�J = ±2 contributions (see section 2). Thus a possible
noninterfering background is higher in the KL data, and this
may allow for a slightly larger resonance width.

In view of the two concurrent results we propose a
resonance width of � = (1.3 ± 0.2) meV. Comer and Read
suggested a value of only 0.6 meV, mainly based on the
resonance dip which they observed at a scattering angle
θ = 40◦ and which they considered to be purely symmetric.
We understand their reasoning for deriving � as based on

DCS [Å
2
/sr]

ELECTRON ENERGY [eV]

11.4 11.5 11.6 11.7 11.8

1.25

1.30

1.35

1.40

1.45
vR=0 vR=1

x 3

Δ E=9.9 meV

Figure 8. Elastic DCS for θ = 45◦ covering the energy range of the
v = 0 and v = 1 resonances. Data points: FR measurements with
�E = 9.9 meV (from fit of first resonance). Full (red) curve:
unconstrained fit of both resonances. Dashed (blue) curve in
magnified plot of the vR = 1 resonance: p of equation (2) for the
second resonance constrained to its value of the first resonance.
Lower set of data: fit errors. (Colour online.)

the assumption that σmin reaches zero, which means that their
value for � should be taken as a lower limit. We note that
Comer and Read observed a resonance dip of 2.2% depth,
which is the result obtained by convolution of a 0.6 meV wide
fully modulated window resonance with a Gaussian resolution
function of the quoted 40 meV width. Actually, from the
shape parameters β for angles 22.5◦ and 45◦ we deduced that
a symmetric window peak (β = 0) should appear close to 30◦

(see figure 7) and found this verified in the later measurement
at that angle.

Elastic scattering may alternatively involve intermediate
excitation of the vibrational level vR = 1 of the resonance
state. Since the vibrational factor t (v) in equation (2) is
reduced from 0.9262 for the main resonance peak to 0.0707
for its higher satellite, the interference term which is linear in
t (v) becomes dominant and should account for a satellite peak
with a size reduced to about 10%. This was indeed observed
in the total cross section from transmission experiments
[1, 8] and has also been seen in elastic and inelastic DCS (e.g.
Comer and Read). For the selected angle θ = 45◦ we have
recorded elastic DCS over an energy range encompassing both
resonances, as shown in figure 8. As for the 30◦ measurement,
improved apparatus conditions led to a resolution of only
9.9 meV. Reassuringly, the line parameters �σ and β for
the first resonance kept to within 4% to their values given in
table 4. An unconstrained fit of the second resonance led to
a strength parameter p(45◦) about 15% larger than for the
first resonance. Due to the unfavourable signal-to-noise ratio
this result is not really significant: the inset in figure 8 shows
also a fit where p was constrained to its value for the first
resonance, which appears to be perfectly acceptable. Since �σ

is rather uniformly reduced to 9–10% for all θ , this reduction
applies also to the total cross section, in good agreement with
observation in [6, 8].
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Figure 9. Overview of absolute DCS for vibrational excitation
N2(X,v = 0 → 1) over a wide incident electron energy range,
measured at a scattering angle of 135◦.

5.3. Vibrational excitation

The N−
2

(
R2�+

g

)
resonance produces striking sharp features in

vibrational excitation of the electronic ground state [2, 11]. In
figure 9, the DCS for VE at an angle of 135◦ is shown over
a wide energy range up to an energy of 40 eV. The DCS for
VE is dominated by resonances over the whole energy range,
with the dπg and fσu shape resonances being most prominent.
Adjacent to the narrow N−

2

(
R2�+

g

)
resonances, there are two

small resonance features around 10.2 eV and 13.8 eV.
Absolute DCSs for direct excitation processes at the

energy 11.4 eV have been given in table 3. For �v = 1,
they are about 3 orders of magnitude smaller than the direct
elastic DCS, roughly in accord with a transition probability
reduced by the factors 〈0|R|1〉2 = 3.6 × 10−3 from vibrational
integration and [d ln(α)/dR]2 = 0.25 or [d ln(q)/dR]2 = 0.81
as the computed ratios of the long-range coupling strength for
vibrational excitation and elastic scattering, respectively (α:
isotropic dipole polarizability, q: quadrupole moment). The
resonant process, on the other hand, should be reduced only
according to the ratio of the Franck–Condon factors involved,
i.e. by about 1/16. Thus the resonance peaks are expected
to be clearly stronger than the nonresonant background and
to exhibit a nearly symmetric peak shape. Moreover, any
asymmetry should be of opposite direction for the first peak
(excitation via (R, v = 0) and the second peak (excitation
via (R, v = 1)). This is indeed what is seen in figure 10
which shows DCS measurements for �v = 1 with the FR
apparatus. From the Franck–Condon factors and symmetry
properties of the involved states, one might further expect
nearly isotropic scattering with a ratio of 1.2 between the area
of the two peaks. In these respects, the measurements show
marked deviations: the area ratio stays nearly constant around
0.8 for angles up to 120◦ but grows strongly to 3.5 in backward
scattering (180◦), reflecting a near collapse of the second peak.
These dependences of peak areas and peak shapes on scattering
angle were already observed and characterized by Tremblay
and Roy [11] in measurements over the angular range 18◦–
162◦. They attributed both features to interference between
resonant and nonresonant vibrational excitation by arguments

DCS [10−2Å2/sr]

ELECTRON ENERGY [eV]

11.4 11.5 11.6 11.7 11.8 11.9
0
2
4
6 180.0°
0

2

4 135.0°
0

2

4 112.5°
0

2

4 90.0 °
0

2

4 45.0 °
0

2

4 22.5 °
0
2
4
6
8

10.0 °

Figure 10. DCS for vibrational excitation to (X, v = 1) via (R,
v = 0, 1). Data points: measurements with the FR apparatus; full
(red) curves: least squares fits using equation (2), � = 1.38 meV;
thin (blue) lines: non-interfering background σbg; thin (black) lines:
total background σnr . (Colour online.)

based on the model previously used by Comer and Read and
detailed out for θ = 18◦. All these effects are more clearly
visible in the new results shown in figure 10.

In order to explore the potential of the model for a
consistent description of elastic and vibrational excitation
scattering, we derive fits for the DCS of figure 10 under the
restriction that � is held fixed at the value determined from
the elastic DCS and the factors t (vR) are taken from table 5.
Besides �E, the resonance positions are carefully readapted
in order not to spoil the small asymmetries. These fits are
shown in figure 10 as full curves. Again, they appear to be
perfect.

The parameters describing the resonance peaks, σnr ,
�σ and β for each of the two peaks, vR = 0, 1, are
then expressed in terms of a common p(θ), but different
nonresonant amplitudes. This is indeed possible with only
small variations of the a e−iφ between the two peaks. However,
this implies accepting that |a|2/(4kikf) is not any more equal to
σnr , that means the background DCS has to be split into a part
that interferes with the resonance and a part that does not. This
is an extension of the model we did not consider for elastic
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Table 5. Parameters of equations (1) and (2) for the vibrational excitation DCSs at 90◦; resonance width � = 1.38 meV; DCS in
10−22−vX m2 sr−1.

vRvX 0 1 1 1 2 1 0 2 1 2 2 2 1 3 2 3

t (v) −0.259 0.235 0.022 0.044 −0.099 0.049 0.022 −0.027
σnr 0.49 0.53 0.56 0.39 0.37 0.36 2.70 2.41
�σ 26.24 33.07 0.91 5.53 42.23 14.46 14.74 53.99
β − π (◦) −2.6 2.8 4.9 −7.3 1.6 −2.1 −13.9 4.4
σpr 32.25 27.23 0.25 8.16 42.65 10.64 23.93 39.38
σbg 0.33 0.39 0.33 0.30 0.04 0.36 1.63 1.58
φ − π/2 (◦) −21.0 −29.6 −15.6 −26.3 78.4 15.8 −33.5 −31.2
p2 1.47 1.47 1.47 1.30 1.30 1.30 1.56 1.56

DCS [0.1Å2/sr]

SCATTERING ANGLE [°]
0 20 40 60 80 100 120 140 160 180

−1

0
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σnr

σbg

ϕ − π /2
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40

Δσ
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Figure 11. Analysis of the DCS for vibrational excitation:
parameters of equations (2) and (3). Full curves: first peak (R,
v = 0), dotted curves: second peak (R, v = 1). σ bg: non-interfering
background.

scattering. The opposite signs of the (small) asymmetries
as well as the inversion of the ratios of peak areas from 1.2
to 0.8 are nicely accounted for by the change of sign of the
vibrational factor t (v) from the first peak to the second. The
collapse of the second peak, starting somewhere below 135◦

and nearly complete at 180◦, is traced to a sign change of
a cos(φ) followed by a rather steep increase. Apart from this
backward region, the function φ(θ) turns out quite similar to
that for elastic scattering. The parameters as functions of θ are
displayed in figure 11. �σ is shown with error bars indicating
the uncertainties introduced by the experimental uncertainties
of σnr of about 20%. To within these limits, σpr appears
isotropic. Angular integration of p(θ)2/2 leads to a value of
1.30 instead of unity, marginally within the confidence range
of the experimental data.

Further support for our model description of the resonance
line profiles comes from data for higher vibrational excitation,

DCS [10−2Å2/sr]
 vR=0                          vR=1                          vR=2

ELECTRON ENERGY [eV]

11.5 11.6 11.7 11.8 11.9 12.0 12.1

0.02

0.04

0.06

0.08

0.10

vX=3

0.0

0.2

0.4

0.6

vX=2

0.0

2.0

4.0

vX=1 7x

Figure 12. DCS at 90◦ for vibrational excitation to (X, v) via (R, v).
Data points: measurements with the FR apparatus; full (red) curves:
least squares fits using equation (2); thin (blue) lines:
non-interfering background σ bg; thin (black) lines: total background
σ nr. (Colour online.)

�v = 2, 3, measured at θ = 90◦. The nonresonant
backgrounds are much stronger than an estimate for direct
vibrational excitation as given above for �v = 1 would
predict, probably indicating that far wings of other resonances
contribute significantly. The measured DCS are shown in
figure 12, again with the fitting line which is obtained as just
described. The alternation of the (very weak) asymmetries
follows the sign changes of t (vR) within the peak sequence
of the same vX; a cos(φ) is nearly constant for vX = 1, 3,
only for vX = 2 the relative size of the peaks requires
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Figure 13. Yield for the production of metastable N∗
2 molecules (see

the text).

a cos(φ) to change sign. Values of the pertinent parameters
are collected in table 5. p(θ)2 cannot be controlled by angular
integration, but its particular value at 90◦ indicates—within
the uncertainties of the measurement—a nearly isotropic
scattering. In conclusion, it is clear that differences in
peak heights by 2 orders of magnitude are nicely determined
by vibrational transition moments with the help from the
interference with a weakly varying nonresonant background.
This nonresonant background may be caused or at least
enhanced by the wings of neighbouring broad resonances (see
figure 9).

5.4. Cross section for excitation of the metastable
N∗

2(E
3�+

g ) level

Using the off-axis channel electron multiplier of the
KL setup for detecting long-lived excited species (see
figure 1), the yield for the production of metastable levels
of the N2 molecule was investigated from 11.4 eV to 13.4 eV.
Figure 13 shows the yield measured over two limited energy
ranges around the N−

2

(
R2�+

g

)
resonance and around the

onset of the N∗
2

(
E3�+

g , v = 0
)

level (spectroscopic threshold
11.874 eV) [25]. The sharp, essentially symmetric peak
reflects enhancement of the metastable yield through the
N−

2

(
R2�+

g

)
resonance; a fit with a Lorentzian profile (FWHM

6.6 meV) indicates an experimental energy resolution of about
5.4 meV. By a direct comparison with the resonances seen in
elastic scattering, it was found that this sharp feature peaks
at an energy identical with the resonance energy of 11.497(2)
eV, as calibrated with the Ar−(3p54s2 2P3/2) resonance. This
peak provides an accurate calibration of the energy scale for
the excitation function of the N∗

2

(
E3�+

g

)
state which rises from

an onset identical with the spectroscopic threshold (to within
2 meV) to a rather sharp peak, located at 11.917(3) eV, only
43 meV above the threshold. Angle-differential measurements
of the cross section for N∗

2

(
E3�+

g , v = 0
)

excitation by
Mazeau et al [40] have shown resonances at 11.92(2) eV
and 12.16(3) eV (these two values have been increased by
0.02 eV to correct for the fact that these authors used for
their energy calibration a value for the He−(1s2s2 2S1/2)

Figure 14. Excitation function for the production of metastable N∗
2

molecules normalized to the absolute measurements of Brunger et al
[39]. (a) Present work and (b) from [39].

resonance which is 0.02 eV below the now accepted
value of 19.365(1) eV [15]). These two resonances
have been classified as 2�+

u by Mazeau et al [40]
according to the observed angular distribution. The prominent
peak in the excitation function for N∗

2

(
E3�+

g

)
at 11.917 eV

appears to draw its strength largely from this resonance,
while the resonance at 12.16 eV is a part of the shoulder
in the excitation function for the N∗

2

(
E3�+

g

)
state (see

figure 14).
The nearly energy-independent metastable yield below the

N∗
2

(
E3�+

g

)
threshold and around the N−

2

(
R2�+

g

)
resonance is

due to the excitation of lower-lying metastable levels (mainly
A3�+

u and a1πg [10, 39, 41]). The dashed line in figure 13
represents a linear (almost constant) function fitted to this
smooth yield. In order to derive a relative cross section for
excitation of the N∗

2

(
E3�+

g

)
state we consider this fit function

to also serve as a proper extrapolation to higher energies (for a
justification of this assumption, see [39]) and subtract it from
the total metastable signal. The resulting cross section for
excitation of the N∗

2

(
E3�+

g

)
level is shown in figure 14. Its

absolute scale is taken from the work of Brunger et al [39] by
normalizing our yield to their absolute cross section (shown
by diamonds) at energies around 12.1 eV. Very good overall
agreement is observed between the shape of our cross section
and that of Brunger et al . At the maximum of the threshold
peak our cross section is 20% higher than that of Brunger
et al probably as a result of our improved resolution. In view
of the general interest in this cross section [39], we present
numerical data for the threshold peak in table 6.

The excitation function of the N∗
2

(
E3�+

g

)
state has been

studied many times in the past. Here we only mention previous
work carried out with high-resolution (energy width around
20 meV) [10, 39, 41]. Brunt et al [41] and Brunger et al [39]
used similar setups involving a channel electron multiplier as
the detector for the metastable levels. In order to enhance
detection of low-lying metastable levels, Newman et al [10]
applied a detector with heated tantalum ribbons in conjunction
with a channel electron multiplier. As compared to our data
(figure 13), the ‘background’ below the onset for N∗

2

(
E3�+

g

)

excitation was substantially higher in the previous work. In
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Table 6. Cross section for excitation of the N∗
2(E

3�+
g ) state in

10−22 m2; our data have been normalized to that of Brunger et al
[39] around an energy of 12.09 eV.

E (eV) ICS E (eV) ICS E (eV) ICS

11.871 0 11.934 13.9 12.045 7.5
11.876 0.2 11.939 13.1 12.069 7.2
11.881 0.8 11.943 12.4 12.083 6.8
11.886 1.6 11.948 11.8 12.093 6.7
11.891 3.0 11.953 11.3 12.102 6.5
11.895 5.2 11.958 10.9 12.121 6.0
11.900 8.4 11.963 10.2 12.150 5.6
11.905 11.6 11.973 9.6 12.179 5.0
11.910 14.2 11.982 9.2 12.198 4.5
11.915 15.7 11.992 8.9 12.217 3.7
11.920 15.9 12.001 8.5 12.237 3.0
11.924 15.4 12.011 8.2 12.256 2.1
11.929 14.7 12.021 7.7 12.275 1.7

the measurements of Brunt et al and Brunger et al, it had
about the same size as the yield for the threshold peak near
11.92 eV. In the yield function of Newman et al , the threshold
peak for N∗

2

(
E3�+

g

)
excitation is much less prominent; it

amounts to only about 9% of the total metastable yield.
The results of the earlier three studies agreed in the

observation of resonance structure above 12 eV. In the range
12.4–13.4 eV, four peaks are observed and—following Mazeau
et al [40]—these bands are labelled (a1,a2) and (b0,b1), as
indicated in figure 14. These peaks have been associated with
Feshbach resonances in which two outer valence electrons with
antiparallel spins are attached to the N+

2(A2�u) grand parent
ion state. In our measurements, the maxima are located to
within 10 meV at 12.54 eV (a1), 12.79 eV (a2), 12.98 eV
(b0) and 13.23 eV (b1), respectively; these energies agree
with those found in the previous work [40, 41, 10] within
the mutual uncertainties. The peak heights of these structures
exhibit some deviations (especially in [10]), which we attribute
to different detector characteristics. We again emphasize the
good agreement of our results with those of Brunger et al [39].

6. Conclusions

Using two electron scattering setups with resolutions �E

of around 6 meV and 13 meV, respectively, the N−
2

(
R2�+

g

)

resonance has been characterized in detail by reporting DCS
line profiles for the angular range 10◦–180◦. Elastic as well as
vibrational excitation cross sections were put on an absolute
scale by joining them to their absolute values from separate
measurements at 11.4 eV. The position of the resonance was
determined as 11.497(2) eV from simultaneous measurements
of the N−

2

(
R2�+

g

)
and the lowest Ar−(4s2) Feshbach resonance,

and as 11.493 eV from ab initio calculations. The latter also
gave accurate vibrational spacings and overlap integrals and
provided details of the electronic structure of the resonance
state.

The observed line profiles could be accurately represented
by a Fano-type expression for the natural line profile,
folded by a Gaussian to account for the respective apparatus
resolution. However, even with the given high resolution,

the electron energy width �E and the resonance width
� could not be accurately determined separately: the
fits turned out insensitive to their difference. Using
the calculated overlap integrals, we derived a consistent
interpretation of elastic and inelastic profiles as the result
of interference between the resonant channels and single
nonresonant backgrounds. This model provides a link between
absolute DCS and � which could thus be determined to
1.38 meV from the FR data and to 1.22 meV from the KL
data. These values imply that their nonresonant DCS at
11.4 eV are both scaled to the same absolute value. This
may not be fully justified since the two setups discriminate
differently against a possible background from rotational
excitation—our tentative explanation of the difference. Our
recommended value for the resonance width is 1.3(2) meV.

The (unexpected) features of vibrational excitation peaks
with respect to their size and asymmetry could be linked to the
signs of the pertinent overlap integral products. In this way,
the experimental information is reduced to the parametrization
of a background amplitude which is only weakly dependent
on energy but shows a very characteristic variation of its
phase with scattering angle. Its understanding requires a full
scattering calculation which was not attempted here.
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their experimental contributions in the early phase of this
project. We gratefully acknowledge I Linert and M Zubek for
providing data in numerical form.

References

[1] Heideman H G M, Kuyatt C E and Chamberlain G E 1966
J. Chem. Phys. 44 355

[2] Comer J and Read F H 1971 J. Phys. B: At. Mol. Phys. 4 1055
[3] Mulliken R S 1957 The Threshold of Space (Oxford:

Pergamon)
[4] Kisker E 1972 Z. Phys. 257 51
[5] Mazeau J, Gresteau F, Hall R I, Joyez G and Reinhardt J 1973

J. Phys. B: At. Mol. Phys. 6 862
[6] Sanche L and Schulz G J 1972 Phys. Rev. A 6 69
[7] Golden D E, Burns D J and Sutcliffe V C 1974 Phys. Rev. A

10 2123
[8] Schulz G J 1973 Rev. Mod. Phys. 45 423
[9] Brunt R J V and Gallagher A 1978 Electronic and Atomic

Collisions, ICPEAC X, Paris 1977 ed G Watel (Amsterdam:
North-Holland)

[10] Newman D S, Zubek M and King G C 1983 J. Phys. B: At.
Mol. Phys. 16 2247

[11] Tremblay D and Roy D 1991 J. Phys. B: At. Mol. Opt. Phys.
24 1867

12

http://dx.doi.org/10.1063/1.1726469
http://dx.doi.org/10.1088/0022-3700/4/8/009
http://dx.doi.org/10.1007/BF01398197
http://dx.doi.org/10.1088/0022-3700/6/5/021
http://dx.doi.org/10.1103/PhysRevA.6.69
http://dx.doi.org/10.1103/PhysRevA.10.2123
http://dx.doi.org/10.1103/RevModPhys.45.423
http://dx.doi.org/10.1088/0022-3700/16/12/019
http://dx.doi.org/10.1088/0953-4075/24/7/032


J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 215202 T H Hoffmann et al

[12] Mielewska B, King G C, Read F H and Zubek M 1999 Chem.
Phys. Lett. 311 428

[13] Read F H and Channing J M 1996 Rev. Sci. Instrum.
67 2372
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